Respuesta :
Answer:
68% of exam scores lie within one std. dev. of the mean
Step-by-step explanation:
Because the standard deviation is 100, one standard deviation above the mean comes out to 600. Â Likewise, one std. dev. below the mean comes out to 400. Â By the Empirical Rule, 68% of exam scores lie within one std. dev. of the mean.
Answer:
[tex]P(400<x<600) = 68.3\%[/tex]
Step-by-step explanation:
We know that the average [tex]\mu[/tex] is:
[tex]\mu=500[/tex]
The standard deviation [tex]\sigma[/tex] is:
[tex]\sigma=100[/tex]
The Z-score is:
[tex]Z=\frac{x-\mu}{\sigma}[/tex]
We seek to find
P(400<x<600)
This is:
[tex]P(400<x<600)=P(\frac{400-500}{100}<\frac{x-\mu}{\sigma}<\frac{600-500}{100})\\\\P(400<x<600)=P(-1<Z<1)[/tex]
Looking for the value of z in a normal table we have to:
[tex]P(Z>1) =0.1587\\\\P(Z>-1) = 0.8413[/tex]
So
[tex]P(-1<Z<1)=P(Z>-1) - P(Z>1) =0.8413-0.1587=0.6826\\\\P(400<x<600) = 68.3\%[/tex]