Triangle RST has vertices R(βˆ’2, 2), S(1, 1), and T(βˆ’1, βˆ’3). Find the coordinates for the image of each vertex for the given rotation.

R(90Β°, 0) (triangle RST)

A.
R'(βˆ’2, βˆ’2), S'(βˆ’1, 1), and T'(3, βˆ’1)
B.
R'(βˆ’2, 2), S'(1, βˆ’2), and T'(3, 1)
C.
R'(2, 2), S'(βˆ’1, βˆ’1), and T'(1, βˆ’3)
D.
R'(βˆ’2, 2), S'(1, βˆ’1), and T'(3, 1)

Respuesta :

Answer:

A. [tex]R'(-2,-2),S'(-1,1),[/tex] and [tex]T'(3,-1)[/tex]

Step-by-step explanation:

Given:

Vertices of triangle RST are [tex]R(-2,2),S(1,1),[/tex] and [tex]T(-1,-3)[/tex].

Rotation is 90Β° about the center O(0,0). The rotation is counter-clockwise as the angle of rotation is positive.

Now, the co-ordinate rule for 90Β° rotation counter-clockwise is given as:[tex](x,y)[/tex] β†’ [tex](-y,x)[/tex]

[tex]x[/tex] and [tex]y[/tex] values interchange their places with [tex]y[/tex] becoming negative when interchanged.

So, [tex]R(-2,2)[/tex] β†’ [tex]R'(-2,-2)[/tex]

[tex]S(1,1)[/tex] β†’ [tex]S'(-1,1)[/tex]

[tex]T(-1,-3)[/tex] β†’ [tex]T'(-(-3),-1)[/tex]

β‡’[tex]T(-1,-3)[/tex] β†’ [tex]T'(3,-1) [/tex]

Therefore, the image of the vertices are [tex]R'(-2,-2),S'(-1,1),[/tex] and [tex]T'(3,-1)[/tex].